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SUMMARY

Two- and three-dimensional, viscous blunt body flows with planar imping-

ing shocks are computed using an explicit, time-dependent, finite-difference

method to solve the complete set of Navier-Stokes equations. The bow shock

is treated as a discontinuity, while all interior shock layer detail such as

shear layers, shock waves, jets and the wall boundary layer are automatically

captured in the solution. Numerical results are presented for cases in which

planar shock waves of different strengths and orientations are allowed to

impinge on the flow field surrounding an infinite cylinder resulting in two-

and three-dimensional shock interference patterns. The numerical results are

compared with experiment.

INTRODUCTION

An extraneous shock wave impinging on a blunt body in a hypersonic flow

has been observed to greatly increase both the heat transfer rate and pres-

sure near the impingement point (refs. I and 2). Flow fields of this type

may occur on hypersonic vehicles such as the Space Shuttle.
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The intense heating and high pressures occur over a small region where

a disturbance, originating at the intersection of the impinging shock and

bow shock, strikes the body. The disturbance may be a free shear layer, a

supersonic jet, or a shock wave depending on the strength and location of

the impinging shock and the shape of the body. Edney (ref. 1) has described

six different types of shock interference patterns which can occur.

In the present study, both two- and three-dimensional shock impingement

flow fields have been numerically computed. In these computations, the

impinging shock is planar and intersects the bow shock surrounding an infi-

nite cylinder (fig. 1). In the two-dimensional case the intersection line

is parallel with the axis of the cylinder (z-axis), and consequently the flow

in each z-plane is identical. This configuration can occur in hypersonic

inlets. In the three-dimensional case, the intersection line is curved and

is not parallel with the cylinder axis. This configuration can occur when

the bow shock from the nose of a vehicle strikes the wing leading edge bow

shock.

The numerical results of this study were computed using a time-depen-

dent, finite-difference method to solve the complete set of Navier-Stokes

equations for a laminar, compressible flow. The time-dependent approach was

chosen because a subsonic region exists in the two-dimensional case and may

exist in the three-dimensional case. Since the governing time-dependent

equations remain a hyperbolic-parabolic set for both subsonic and super-

sonic flows, all cases can be solved as an initial-value problem where the

steady-state solution is approached asymptotically with time.
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SYMBOLS

e = specific internal energy

E = total energy

k = coefficient of thermal conductivity

M = Mach number

P = pressure

Pr = Prandtl number

q = heat flux vector

r,e,z = cylindrical coordinates

rb = body radius

rs = shock radius

ReD  = Reynolds number based on cylinder diameter

t = time

T = temperature

Ur,u ,uz  = velocity components

= stretching parameter

y = ratio of specific heats

X = sweep angle

= coefficient of viscosity

p = density

7.. =' shear stress tensor

subscripts

S= freestream condition

cyl = swept infinite cylinder value

stag = no impingement stagnation value
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GOVERNING EQUATIONS

The equations governing the flow of a compressible, viscous fluid in the

absence of body forces and electromagnetic effects can be written in the

following weak conservation-law form using three-dimensional cylindrical

coordinates:
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The Navier-Stokes expressions for the components of the shear stress

tensor and heat flux vector have been used in thisstudy and are given by:
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For the two-dimensional problem the crossflow (z-component) terms are omitted.

To complete this set of equations the perfect gas equation of state is

used. In addition, Sutherland's equation and a constant Prandtl number

assumption are used to compute coefficients of viscosity (p and thermal

conductivity (k).

Equation (1) is transformed from the physical domain (r,e,z,t) into the

computational domain (x,y,z,t) using the following independent variable

transformation:

r - r
x = f( s

s b

y= 0

z =z (4)

t= t

This transformation maps the z-plane between the bow shock and the blunt

body into a rectangular region and stretches the radial distribution of grid

points according to the function f. The function f chosen for all cases

considered here is given by (ref. 3):

f(a) = (5)
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Equation (5) refines the grid near the body and thus permits better boundary

layer resolution. The parameter P controls the amount of refinement and has

a practical range between 1 and 2 with the smaller values giving larger

amounts of refinement.

NUMERICAL METHOD

Finite-Difference Scheme

Equation (1) is solved by MacCormack's explicit finite-difference meth-

od (ref. 4). This method is composed of a predictor-corrector sequence

which is second-order accurate in both space and time. For this method to

remain stable the allowable time step is limited by the CFL condition. To

ensure numerical stability in regions of large gradients, a fourth-order

smoothing term (ref. 3) is applied in each spatial direction for both the

predictor and corrector steps.

Boundary Conditions

Two-Dimensional. - The wall boundary conditions are determined by

specifying an isothermal wall, a zero normal pressure gradient and the no

slip condition. The bow shock forms one boundary of the computational re-

gion and its location at each time step is determined using a predictor-

corrector method (ref. 3). Flow variables at the row of grid points just

inside the bow shock are obtained by applying the exact shock jump relations

(Rankine-Hugoniot equations). The impinging shock is introduced at the bow

shock by discontinuously changing-the freestream conditions across the

intersection point.
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The tangential outflow boundaries, both top and bottom, are treated

with second-order extrapolations. These boundary conditions are stable pro-

vided the outflow Mach number.in the inviscid region of the shock layer is

supersonic.

Three-Dimensional. - The boundary conditions for the three-dimensional

case are identical to those of the two-dimensional case with the following

exceptions. The geometry in the three-dimensional case permits a plane of

symmetry to be assumed along the stagnation line across which reflective

boundary conditions are used. The flow conditions at the inflow plane in

the crossflow direction are held fixed for all time equal to the conditions

from a swept infinite cylinder solution calculated prior to the shock im-

pingement solution. The flow conditions at the outflow boundary are deter-

mined using a zeroth-order extrapolation in the crossflow direction.

RESULTS

Two-Dimensional

Two-dimensional results were computed with the following freestream

conditions:

M = 4.6 p = 14.93 N/m 2

ReDc = 10,000 T = 167 OK (6)

Pr = 0.72 y = 1.4

The cylinder had a diameter of 0.3048 m and a constant wall temperature of

556 OK. The freestream Mach number and impinging shock angles were chosen

to correspond with the three-dimensional tests of Edney (ref. 1) in which
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planar shocks were allowed to impinge upon a hemisphere.

The undisturbed blunt body flow field was computed first and the result-

ing solution was used as the initial condition for the shock impingement

computations. Wall pressure and heat transfer rates from this undisturbed

case compared very well with independent results (ref. 3).

Two shock impingement cases are presented here with identical inter-

section positions, = 90, but with different impinging shock strengths. In

the first case the impinging shock made an angle of 16.10 with the free-

stream velocity vector. The pressure ratio across this impinging shock was

1.73 with a flow deflection angle of 50. The results of this computation are

shown in figure 2 as a set of Mach number contours which were drawn by a

computer plotter in increments (AM) of 0.05. A strong shear layer emanates

from the intersection point and makes a tangential approach to the body sur-

face. This causes moderate increases in heat transfer and wall pressure in

the vicinity of the attachment point. The lower sonic line position remains

essentially unchanged from the no impingement case while the upper sonic

line position is changed considerably. The new upper sonic line emanates

from the intersection point and follows the shear layer to the body.

In the second two-dimensional case the impinging shock made an angle

of 20.90 with the freestream velocity vector. The pressure ratio across

this impinging shock was 2.98 with a flow deflection angle of 100. The

results of this computation are shown in figure 3 as a set of Mach number

contours drawn in the same manner as figure 2. The bow shock distinctly

shows a "double kink." A strong ,shear layer emanates from the intersection

point (first kink) and strikes the body. An imbedded supersonic region

exists between the shear layer and a shock emanating from the second kink
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in the bow shock. The stagnation point has been shifted approximately 450

around the cylinder by the impingement. It is at this new stagnation point

where large increases in heat flux and wall pressure occur. The shock

impingement also causes the bow shock standoff distance below the inter-

section point to increase dramatically.

Figure 4 shows a Schlieren photograph of the corresponding three-

dimensional test of Edney. A qualitative comparison between the two-dimen-

sional numerical and three-dimensional experimental results show the same

general features, that is: 1) "double-kinked" bow shock, 2) shear layer

emanating from the first kink and striking the body and 3) am imbedded shock

emanating from the second kink in the bow shock. This good agreement gives

credibility to the numerical computation.

Comparisons of the wall pressures and heat transfer rates before and

after shock impingement are shown in figures 5 and 6 for the 20.90 shock

impingement case. Both curves represent numerical results as no experimental

data was available for this set of conditions. The increases in wall pres-

sure and heat transfer rate were both approximately 2.2 times greater than

the no impingement stagnation point values.

-Three-Dimensional

The preliminary three-dimensional solution presented in this paper was

computed with the following freestream conditions:

M = 5.94 P = 559.1 N/m 2

ReDc = 18,000 T = 59.6 OK (7)

Pr = 0.72 y = 1.4

X= 25.00
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The cylinder was 0.025 m in diameter and had a constant wall temperature of

394 K. The freestream conditions (except for ReD-), impinging shock angle

and sweep angle were all chosen to agree with the experiment of Keyes and

Hains (ref. 2). The freestream viscosity was chosen .to be an order of mag-

nitude larger than in the experiment, thus making the Reynolds number ten

times smaller. This was done to physically thicken the boundary layer and

make its resolution possible with fewer grid points.

At the start of the shock impingement computation the flow variables

in all z-planes were set equal to a previously computed swept infinite

cylinder solution. Then, except for the flow variables at the inflow plane

which were held fixed, the flow variables in all other planes were allowed

to change during the computation under the influence of the impinging shock.

A comparison of the stagnation plane shock shapes is shown in figure 7.

The results of Keyes and Hains were obtained by allowing a planar impinging

shock to strike the shock layer on a finite swept cylinder. The intersection

point along the stagnation plane was only three centimeters downstream from

one end of the cylinder. The shock standoff distance for the initial nu-

merical z-plane is therefore much different than the corresponding value of

the experimental results. When these curves are examined in light of this

difference the comparison seems quite good.

A comparison of the stagnation line wall pressures is shown in figure

8. The general trend of the comparison is reasonable. However, the peak

value in the experimental curve, which is caused by a boundary layer inter-

action with a transmitted shock, is not reproduced in the numerical results.

A small peak does occur in the numerical -results but differs slightly

in position with the'experimental peak.
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A comparison of the stagnation line heat transfer is presented in

figure 9. A peak in the heating rate is measured for both the numerical and

experimental results although the positions and heights of the peaks are not

in good agreement. The coarse grid, numerical smoothing, and increased

physical viscosity probably all contribute to the poor resolution of the

transmitted shock and therefore, to the poor agreement. Future investiga-

tions will either remove or improve these limitations.

For this preliminary three-dimensional solution a coarse 21 x 21 X 41

grid was used requiring 90,405 words of array storage. The total program

storage (program and array storage) was 120,000 words. The execution time

on a CDC 7600 computer was 47 minutes.

CONCLUDING REMARKS

Both two- and three-dimensional shock impingement flow fields have been

computed using a time-dependent finite-difference procedure to solve the

complete set of Navier-Stokes equations. Good qualitative comparisons were

obtained between two-dimensional numerical results and corresponding three-

dimensional experiments. In addition, the ability to compute the prelimi-

nary three-dimensional solution demonstrated that the large computer demands

associated with problems of this type can be overcome.
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Figure 8.-Stagnation line, wall pressure comparison.
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Figure 9.- Stagnation line heat transfer comparison.
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